Рассмотрено на заседании методического объединения Протокол № 1 от 29.08.2023г.

Принято на заседании педагогического совета Протокол № 1 от 30.08.2023г.

Утверждено

Директор гимназии № 8

Дюкин А.Г. Приказ № 267 от 30.08.2023г.

Рабочая программа спецкурса

«Решение задач части С в ЕГЭ по математике»

11 класс

2023 - 2024

Составитель: Смольникова О.А.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по спецкурсу «Решение задач с параметрами» составлена на основе следующих нормативных документов:

- Федерального закона №273 ФЗ «Об образовании в Российской Федерации» от 21.
 12. 2012:
 - Федерального закона «О защите прав потребителей»;
- -Устава Муниципального бюджетного общеобразовательного учреждения «Гимназия№8» (приказ УО №333-ОД от 10.12.2015);
- Положения о платных образовательных услугах, предоставляемых МБОУ «Гимназия №8» г. Глазова. Принято на Совете гимназии протокол №3 от 29.12.15, утверждено директором гимназии приказ №407 от 30.12.15, п.9;
- Положения о рабочей программе учителя работающего по ФГОС 6 11класс МБОУ «Гимназия № 8» ;

Программа по спецкурсу «Решение задач с параметрами» предназначена для учащихся 11 классов и рассчитана на 36 часов в год.

Он охватывает важнейшие темы школьного курса математики: линейные уравнения и неравенства, квадратный трехчлен, функции, графики, рациональные и иррациональные уравнения и неравенства, системы уравнений, логарифмические и показательные уравнения и неравенства, тригонометрические уравнения и неравенства, производные и интегралы. Но в школьном курсе алгебры задачи с параметрами или почти не рассматриваются, или рассматриваются самые простейшие.

Спецкурс рассчитан на обучение решению задач, содержащих параметры, из разных разделов элементарной математики, предполагает рассмотрение основных типов задач и подходов к их решению.

Описание многих математических, физических, экономических и других закономерностей часто приводит к решению задач с параметрами. Однако учебники для средней школы практически не содержат материала, позволяющего научить учащихся решать подобные задачи. Данный спецкурс посвящен формированию основных навыков в решении подобных задач.

В процессе изучения данного курса учащиеся смогут овладеть сведениями о практическом применении, умениями, связанными с работой с научно-популярной справочной литературой, элементами исследовательской работы, связанной с поиском, отбором, анализом, обобщением.

Решение задач с параметрами открывает перед учащимися значительное число эвристических приемов общего характера, ценных для математического развития личности, формирования логической культуры (чего не хватает большинству выпускников), применяемых в исследованиях и на любом другом математическом материале.

Цель курса: Формирование и закрепление навыков и умений в рамках углубленного школьного курса математики, подготовка к олимпиадам.

Задачи курса: Основной задачей является формирование у учащихся устойчивого интереса к математике, выявление и развитие их математических способностей, ориентация на профессии, существенным образом связанных с математикой, подготовка для поступления и обучения в высших учебных заведениях.

Содержание курса

.

І. Уравнения, неравенства и их системы.

Линейные уравнения и неравенства с параметрами. Системы линейных уравнений с параметром. квадратные уравнения с параметрами. Исследование знаков корней квадратного уравнения. Задача расположения корней квадратного уравнения. Задача расположения корней квадратного трехчлена.

Системы квадратных уравнений и неравенств с параметром. Параметры в тригонометрических уравнениях и неравенствах. Параметры в показательных уравнениях и неравенствах. Параметры в логарифмических уравнениях и неравенствах. Параметры в иррациональных уравнениях и неравенствах.

II. Свойства функций в задачах с параметрами.

Область значений функций, экстремальные свойства функций. Монотонность. Четность. Периодичность.

III. Задачи с параметрами на производную.

Касательная к кривой. Критические точки, монотонность. Наибольшее и наименьшее значение функции. Оценки. Построение графиков функций.

IV. Методы решения задач с параметрами.

Аналитические решения основных типов задач. Параметр, как равноправная переменная. Геометрические методы решения. Координатная плоскость (x; y). Использование симметрии аналитических выражений. "Выгодная точка".

V. Задачи, связанные с количеством решений уравнений.

Задачи о количестве корней уравнения. Задачи о наличии (отсутствии) решений у уравнения. Задачи о единственности решения. Задачи о равносильности уравнений.

Спецкурс рассчитан на 36 часов, 1 час в неделю.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Последовательность тем в курсе	№ урок а	Тема урока	Дата
1. Простейшие	1	Определение параметра. Виды уравнений и	
уравнения и		неравенств, содержащих параметр.	
неравенства с			
параметром			
	2	Примеры простейших уравнений и неравенств с	
		параметрами.	
2. Линейные	3	Общие подходы к решению линейных уравнений.	
уравнения и			
неравенства			
(аналитический и			
графический способ).			
Системы линейных			
уравнений.			
	4	Решение линейных и дробно-рациональных	
		уравнений, содержащих параметр.	

	5	Определение и алгоритм решения линейных
		неравенств.
	6	Решение линейных неравенств, содержащих
		параметр (аналитическим и графическим методом).
	7	Решение линейных неравенств с дополнительным
		условием.
3. Квадратные	8	Актуализация знаний о квадратном трехчлене,
уравнения,		квадратном уравнении. Исследование количества
содержащие параметр.		корней, в зависимости от дискриминанта, знаков
		корней с помощью теоремы Виета.
	9	Исследование количества корней, в зависимости
		от дискриминанта, знаков корней с помощью
		теоремы Виета.
	10	Исследование расположения корней квадратного
		трехчлена относительно одной точки,
		относительно двух и более точек.
	11	Исследование расположения корней квадратного
		трехчлена относительно одной точки,
		относительно двух и более точек.
	12	Исследование расположения корней квадратного
		трехчлена относительно одной точки,
		относительно двух и более точек.
	13	Задачи, сводящиеся к исследованию расположения
		корней квадратного трехчлена.
	14	Задачи, сводящиеся к исследованию расположения
		корней квадратного трехчлена.
4. Графический метод.	15	Актуализация знаний по теме: «Элементарные
		функции, свойства, графики».
	16	Использование особенностей функций
		(монотонность, чётность, нечётность,
	4.5	непрерывность) при решении задач с параметрами.
	17	Использование особенностей функций
		(монотонность, чётность, нечётность,
	10	непрерывность) при решении задач с параметрами.
	18	Использование особенностей функций
		(монотонность, чётность, нечётность,
	10	непрерывность) при решении задач с параметрами.
	19	Метод областей.
	20	Метод областей.
	21	Метод областей.
	22	Применение графического метода при решении
		уравнений и неравенств с модулями, содержащими
	23	Применение графинеского мето на при решении
	23	Применение графического метода при решении
		уравнений и неравенств с модулями, содержащими
	24	Применение графинеского метона при решении
	∠ 4	Применение графического метода при решении
		уравнений и неравенств с модулями, содержащими
		параметр.

5. Иррациональные	25	Актуализация знаний о методах решения	
уравнения и		иррациональных уравнений и неравенств.	
неравенства.		прриднонивым уривнении и перивенетв.	
перивенетви	26	Решение иррациональных уравнений и неравенств	
	20	с параметром.	
	27	Решение иррациональных уравнений и неравенств	
	27	с параметром.	
6.	28	Использование основных свойств	
тригонометрические Стат	20	тригонометрических функций в задачах с	
уравнения и		параметрами (область определения, область	
неравенства.		значений, четность, и т.д.).	
перавенетва.	29	Использование основных свойств	
	2)	тригонометрических функций в задачах с	
		параметрами (область определения, область	
		значений, четность, и т.д.).	
	30		
	30	Сведение тригонометрических задач к	
	21	исследованию квадратного трехчлена.	
	31	Сведение тригонометрических задач к	
	22	исследованию квадратного трехчлена.	
7. Применение	32	Актуализация знаний по теме: «Производная.	
производной.		Геометрический и физический смысл производной.	
		Применение производной».	
	33	Решение задач с параметрами, применяя	
		производную.	
8. Показательные и	34	Решение показательных и логарифмических	
логарифмические		уравнений (неравенств) с параметрами.	
уравнения и			
неравенства.			
	35	Решение показательных и логарифмических	
		уравнений (неравенств) с параметрами.	
	36	Решение показательных и логарифмических	
		уравнений (неравенств) с параметрами.	

В результате изучения курса учащиеся должны узнать способы решения линейных, квадратичных, рациональных, иррациональных, тригонометрических, показательных и логарифмических уравнений, неравенств, систем уравнений с параметрами разными способами: аналитическим, графическим, с использованием свойств функций, с помощью производной и должны уметь применять их при решении задач.

ЛИТЕРАТУРА

1. В. К. Егерьев и др. Сборник задач по математике для поступающих во ВТУЗы/ Под редакцией Сканави. – М.: ООО «Гамма-С.А.», АО «Столетие», 1999.

- 2. С. Н. Олехник, М.К.Потапов, П.И. Пасиченко. Уравнения и неравенства. Нестандартные методы решения. М.: Дрофа, 2001
- 3. М. П. Потапов, С. Н. Олехник, Ю. Н. Естеренко. Математика. Методы решения задач. Для поступающих в ВУЗы.
- 4. Э. Н. Балаян. Универсальный репетитор по математике. Ростов на/Д: Феникс, 2015.
- 5. Крамор В.С.. Задачи с параметрами и методы их решения. М.: ООО «Издательство Оникс»: «Издательство «Мир и Образование», 2007.
- 6. Л. О. Денищева и др. Единый государственный экзамен. Математика. Контрольные измерительные материалы.
- 7. Математика. Подготовка к ЕГЭ–2017 / Под редакцией Ф. Ф. Лысенко.–Ростов-на-Дону: Легион–М, 2017.
- 8. Сборник задач по математике с решениями/ Под ред. М. И. Сканави.–М.: Издательский Дом ОНИКС: Альянс–В, 1999.
- 9. А. П. Ершова, В. В. Голобородько. Самостоятельные и контрольные работы по алгебре и началам анализа для 10–11 классов.–М.: Илекса, 2003.
- 10. Задачи по алгебре и началам анализа: Пособие для учащихся 10–11 кл. общеобразоват. учреждений/С. М. Саакян, А. М. Гольдман.–М.: Просвещение, 2001